High rates of HCO3- secretion and Cl- absorption against adverse gradients in the marine teleost intestine: the involvement of an electrogenic anion exchanger and H+-pump metabolon?

نویسندگان

  • M Grosell
  • E M Mager
  • C Williams
  • J R Taylor
چکیده

Anion exchange contributes significantly to intestinal Cl(-) absorption in marine teleost fish and is thus vital for successful osmoregulation. This anion exchange process leads to high luminal HCO(3)(-) concentrations (up to approximately 100 mmol l(-1)) and high pH and results in the formation of CaCO(3) precipitates in the intestinal lumen. Recent advances in our understanding of the transport processes involved in intestinal anion exchange in marine teleost fish include the demonstration of a role for the H(+)-pump (V-ATPase) in apical H(+) extrusion and the presence of an electrogenic (nHCO(3)(-)/Cl(-)) exchange protein (SLC26a6). The H(+)-V-ATPase defends against cellular acidification, which might otherwise occur as a consequence of the high rates of base secretion. In addition, apical H(+) extrusion probably maintains lower HCO(3)(-) concentrations in the unstirred layer at the apical surface than in the bulk luminal fluids and thus facilitates continued anion exchange. Furthermore, H(+)-V-ATPase activity hyperpolarizes the apical membrane potential that provides the driving force for apical electrogenic nHCO(3)(-)/Cl(-) exchange, which appears to occur against both Cl(-) and HCO(3)(-) electrochemical gradients. We propose that a similar coupling between apical H(+) extrusion and nHCO(3)(-)/Cl(-) exchange accounts for Cl(-) uptake in freshwater fish and amphibians against very steep Cl(-) gradients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of intestinal bicarbonate transporters involved in formation of carbonate precipitates to stimulate water absorption in marine teleost fish.

Marine teleost fish precipitate divalent cations as carbonate deposits in the intestine to minimize the potential for excessive Ca2+ entry and to stimulate water absorption by reducing luminal osmotic pressure. This carbonate deposit formation, therefore, helps maintain osmoregulation in the seawater (SW) environment and requires controlled secretion of HCO3(-) to match the amount of Ca2+ enter...

متن کامل

Bicarbonate secretion plays a role in chloride and water absorption of the European flounder intestine.

Experiments performed on isolated intestinal segments from the marine teleost fish, the European flounder (Platichthys flesus), revealed that the intestinal epithelium is capable of secondary active HCO3(-) secretion in the order of 0.2-0.3 micromol x cm(-2) x h(-1) against apparent electrochemical gradient. The HCO3(-) secretion occurs via anion exchange, is dependent on mucosal Cl(-), results...

متن کامل

Ouabain-sensitive bicarbonate secretion and acid absorption by the marine teleost fish intestine play a role in osmoregulation.

The gulf toadfish (Opsanus beta) intestine secretes base mainly in the form of HCO3- via apical anion exchange to serve Cl- and water absorption for osmoregulatory purposes. Luminal HCO3- secretion rates measured by pH-stat techniques in Ussing chambers rely on oxidative energy metabolism and are highly temperature sensitive. At 25 degrees C under in vivo-like conditions, secretion rates averag...

متن کامل

Intestinal anion exchange in teleost water balance.

Simultaneous measurements of all major electrolytes including HCO3(-) and H+ as well as water demonstrated that fluids absorbed by the anterior intestine of the marine gulf toadfish under in vivo-like conditions on an overall net basis are hypertonic at 380 mOsm and acidic ([H+] = 27 mM). This unusual composition of fluids absorbed across the intestinal epithelium is due to the unusual intestin...

متن کامل

The involvement of H+-ATPase and carbonic anhydrase in intestinal HCO3- secretion in seawater-acclimated rainbow trout.

Pyloric caeca and anterior intestine epithelia from seawater-acclimated rainbow trout exhibit different electrophysiological parameters with lower transepithelial potential and higher epithelial conductance in the pyloric caeca than the anterior intestine. Both pyloric caeca and the anterior intestine secrete HCO(3)(-) at high rates in the absence of serosal HCO(3)(-)/CO(2), demonstrating that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 212 Pt 11  شماره 

صفحات  -

تاریخ انتشار 2009